

Photoproduction of KΣ(1385) from nucleons

Yongseok Oh (Kyungpook National University, Korea)

MENU 2010 Conference, May 31 - June 4, 2010, Williamsburg, VA

- 1. Introduction
- 2. Model for the production mechanism
 - without resonances
- 3. Model for the production mechanism
 - with resonances
- 4. Summary and Outlook

1. Introduction

- Strangeness (photo)production from nucleons:
 - To obtain a deeper understanding of baryon structure
 - To search for missing resonances
 - Mostly focused on kaon photoproduction accompanied by $\Lambda(1116)$ or $\Sigma(1193)$
- Recent experiments on strangeness production
 - $K^*\Lambda$ and $K^*\Sigma$ photoproduction
 - CLAS Collaboration, hep-ex/0601010, PRC 75 (2007)
 - CBELSA/TAPS Collaboration, EPJA 35 (2008)
 - Baryon resonances
 - Scalar κ meson (YO, H. Kim, PRC 73 (2006), PRC 74 (2006))
 - $K\Sigma(1385)$ photoproduction
 - CLAS Collaboration, hep-ex/0601010
 - LEPS Collaboration, PRC 78 (2008), PRL 102 (2009)

*K*Σ(1385)

- Quark model predictions
 - Capstick, Roberts, PRD 58 (1998)
 - Most resonances have small couplings to $K\Sigma(1385)$
 - But some resonances, mostly missing or not-well-established, have large couplings to this channel e.g. $\Gamma[N\frac{3}{2}^{-}(2095) \rightarrow K\Sigma(1385)] \approx 60 \text{ MeV}$
 - Can we find such resonances in this reaction?

Previous works

- Experiments
 - Only a few data for total cross section
 - Done at pre-1970s
 - Recent experiments at JLab (& Spring-8)
 - 23 different energies from threshold to W = 3.8 GeV
 - More data for total/differential cross sections are to be accumulated.
- Theory
 - No detailed studies on this reaction
 - Lutz, Soyeur, NPA 748 (2005)
 - Single and double kaon pole terms in diff. cross section (extrapolated from limited electroproduction data)

2. Model for the production mechanism - without resonances

 $\bigcirc \mathcal{L}_{\gamma K K^*} = g_{K^* K \gamma} \varepsilon^{\mu \nu \alpha \beta} \partial_{\mu} A_{\nu} \partial_{\alpha} K_{\beta}^{*-} \bar{K}^+ + \text{H.c.} \quad \text{with } g_{K^* K \gamma} = -0.388 \text{ GeV}^{-1}$

$K^*N\Sigma^*$ interaction

- Vertex of $\frac{3}{2} \rightarrow \frac{1}{2} + 1$ transition
- 3 independent terms

$$\begin{aligned} \mathcal{L}_{K^*N\Sigma^*} &= \frac{ig_1}{2M_N} \overline{K}^{*\mu\nu} \overline{\Sigma}^*_{\mu} \cdot \tau \gamma_{\nu} \gamma_5 N \\ &+ \frac{g_2}{(2M_N)^2} \overline{K}^{*\mu\nu} \overline{\Sigma}^*_{\mu} \cdot \tau \gamma_5 \partial_{\nu} N \\ &- \frac{g_3}{(2M_N)^2} \partial_{\nu} \overline{K}^{*\mu\nu} \overline{\Sigma}^*_{\mu} \cdot \tau \gamma_5 N + \text{H.c.}, \end{aligned}$$
$$(K^{*\mu\nu} &= \partial^{\mu} K^{*\nu} - \partial^{\nu} K^{*\mu})$$

$K^*N\Sigma^*$ couplings

- SU(3) relation from $g_1(\rho N\Delta) \sim 5.5$
- But there has been no serious consideration for the couplings g_2 and g_3 . \Rightarrow threat them as free parameters
 - In fact, K^* exchange is small unless g_2 and/or g_3 are unrealistically large.

Result

Total cross section

 $\gamma p \rightarrow K^+ \Sigma^0(1385)$

Cannot explain the peak observed in the CLAS data (regardless of the FF)

- Consider N and Δ resonances
- Even the resonances listed in PDG do not have branching ratio into $K\Sigma(1385)$ decay channel
 - Use the quark model for the resonance parameters Capstick, Roberts *PRD* **58** (1998), Capstick *PRD* **46** (1992)
 - This model predicts that
 - Higher spin resonances (j > 5/2) have small couplings to the $K\Sigma(1385)$ channel

 \rightarrow we consider the resonances of spin up to 5/2

- Instead of all the predicted resonances, we consider only a few resonances which are predicted to have a large decay width into the *K*Σ(1385) channel
- 5 resonances listed in PDG plus 3 missing resonances
- The PDG resonances are either one-star or two-star rated

Lagrangian

$RN\gamma$ interactions

$$\begin{aligned} \mathcal{L}_{RN\gamma} \left(\frac{1}{2}^{\pm} \right) &= \frac{ef_1}{2M_N} \bar{N} \Gamma^{(\mp)} \sigma_{\mu\nu} \partial^{\nu} A^{\mu} R + \text{H.c.}, \\ \mathcal{L}_{RN\gamma} \left(\frac{3}{2}^{\pm} \right) &= -\frac{ief_1}{2M_N} \overline{N} \Gamma^{(\pm)}_{\nu} F^{\mu\nu} R_{\mu} \\ &- \frac{ef_2}{(2M_N)^2} \partial_{\nu} \bar{N} \Gamma^{(\pm)} F^{\mu\nu} R_{\mu} + \text{H.c.}, \\ \mathcal{L}_{RN\gamma} \left(\frac{5}{2}^{\pm} \right) &= \frac{ef_1}{(2M_N)^2} \bar{N} \Gamma^{(\mp)}_{\nu} \partial^{\alpha} F^{\mu\nu} R_{\mu\alpha} \\ &- \frac{ief_2}{(2M_N)^3} \partial_{\nu} \bar{N} \Gamma^{(\mp)} \partial^{\alpha} F^{\mu\nu} R_{\mu\alpha} + \text{H.c.}, \end{aligned}$$

Couplings and helicity amplitudes

$$\Gamma(R \to N\gamma) = \frac{k_{\gamma}^2}{\pi} \frac{2M_N}{(2j+1)M_R} [|A_{1/2}|^2 + |A_{3/2}|^2],$$

$$\begin{split} A_{1/2}\left(\frac{1}{2}^{\pm}\right) &= \mp \frac{ef_1}{2M_N} \sqrt{\frac{k_{\gamma} M_R}{M_N}}, \\ A_{1/2}\left(\frac{3}{2}^{\pm}\right) &= \mp \frac{e\sqrt{6}}{12} \sqrt{\frac{k_{\gamma}}{M_N M_R}} \left[f_1 + \frac{f_2}{4M_N^2} M_R(M_R \mp M_N) \right], \end{split}$$

$$\begin{split} A_{3/2}(\frac{3}{2}^{\pm}) &= \mp \frac{e\sqrt{2}}{4M_N} \sqrt{\frac{k_{\gamma}M_R}{M_N}} \left[f_1 \mp \frac{f_2}{4M_N} (M_R \mp M_N) \right], \\ A_{1/2}(\frac{5}{2}^{\pm}) &= \pm \frac{e}{4\sqrt{10}} \frac{k_{\gamma}}{M_N} \sqrt{\frac{k_{\gamma}}{M_N M_R}} \\ &\times \left[f_1 + \frac{f_2}{4M_N^2} M_R (M_R \pm M_N) \right], \\ A_{3/2}(\frac{5}{2}^{\pm}) &= \pm \frac{e}{4\sqrt{5}} \frac{k_{\gamma}}{M_N^2} \sqrt{\frac{k_{\gamma}M_R}{M_N}} \left[f_1 \pm \frac{f_2}{4M_N} (M_R \pm M_N) \right], \end{split}$$

- In QM, the coupling constants are not given.
- Instead, the helicity amplitudes are given

$RK\Sigma^*$ interactions

$$\begin{aligned} \mathcal{L}_{RK\Sigma^*} \left(\frac{1}{2}^{\pm}\right) &= \frac{h_1}{M_K} \partial_\mu K \,\bar{\Sigma}^{*\mu} \Gamma^{(\mp)} R + \text{H.c.}, \\ \mathcal{L}_{RK\Sigma^*} \left(\frac{3}{2}^{\pm}\right) &= \frac{h_1}{M_K} \partial^\alpha K \,\bar{\Sigma}^{*\mu} \Gamma^{(\pm)}_\alpha R_\mu \\ &+ \frac{ih_2}{M_K^2} \partial^\mu \partial^\alpha K \,\bar{\Sigma}^*_\alpha \Gamma^{(\pm)} R_\mu + \text{H.c.}, \end{aligned}$$
$$\begin{aligned} \mathcal{L}_{RK\Sigma^*} \left(\frac{5}{2}^{\pm}\right) &= \frac{ih_1}{M_K^2} \partial^\mu \partial^\beta K \,\bar{\Sigma}^{*\alpha} \Gamma^{(\mp)}_\mu R_{\alpha\beta} \\ &- \frac{h_2}{M_K^3} \partial^\mu \partial^\alpha \partial^\beta K \,\bar{\Sigma}^*_\mu \Gamma^{(\mp)} R_{\alpha\beta} + \text{H.c.} \end{aligned}$$

By angular momentum and parity conservation,

1 coupling for the resonance with j = 1/22 couplings for the resonance with $j \ge 3/2$

To determine the couplings with sign, we need the decay amplitudes. The decay width is not enough.

Decay amplitudes

Resonance parameters

Resonance	PDG [29]	Amplitudes of $R \to K \Sigma (1385)^{a}$		h_1	h_2	Amplitudes of $R \to N \gamma^{\rm b}$		f_1	f_2
		$G(\ell_1)$	$G(\ell_2)$			$A_{1/2}^{p}$	$A^{p}_{3/2}$		
$N\frac{1}{2}^{-}(1945)$	$S_{11}^{*}(2090)$	G(2) = +1.7	_	-9.8	_	+12	_	-0.055	_
$N\frac{3}{2}^{-}(1960)$	$D_{13}^{**}(2080)$	G(0) = +1.3	G(2) = +1.4	0.24	-0.54	+36	-43	-1.25	1.21
$N\frac{5}{2}^{-}(2095)$	$D_{15}^{**}(2200)$	G(2) = -2.0	G(4) = 0.0	0.29	-0.08	-9	-14	0.37	-0.57
$\Delta \frac{3}{2}^{-}(2080)$	$D_{33}^{*}(1940)$	G(0) = -4.1	G(3) = -0.5	-0.68	1.00	-20	-6	0.39	-0.57
$\Delta \frac{5}{2}^{+}(1990)$	$F_{35}^{**}(2000)$	G(1) = +4.0	G(3) = -0.1	-0.87	0.11	-10	-28	-0.68	-0.062

^aIn $\sqrt{\text{GeV}}$. ^bIn 10⁻³/ $\sqrt{\text{GeV}}$.

PDG resonances

Resonance	Amplitudes of R	h_1	h_2	Amplitudes of $R \to N \gamma^{\rm b}$		f_1	f_2	
	$G(\ell_1)$	$G(\ell_2)$			$A_{1/2}^{p}$	$A^{p}_{3/2}$		
$N\frac{3}{2}^{-}(2095)$	G(0) = +7.7	G(2) = -0.8	0.99	0.27	-9	-14	0.49	-0.83
$N\frac{5}{2}^{+}(1980)$	G(1) = -3.6	G(3) = -0.1	0.59	0.24	-11	-6	0.019	-0.13
$\Delta \frac{3}{2}^{-}(2145)$	G(0) = +5.2	G(2) = -1.9	0.25	0.46	0	+10	0.11	-0.059

^aIn $\sqrt{\text{GeV}}$. ^bIn 10⁻³/ $\sqrt{\text{GeV}}$.

missing resonances

Results $(\gamma p \rightarrow K^+ \Sigma^{*0})$

Total cross section

Results $(\gamma p \rightarrow K^+ \Sigma^{*0})$

Differential cross section

Beam asymmetry

Results $(\gamma n \rightarrow K^+ \Sigma^{*-})$

Differential cross section

Beam asymmetry

4. Summary and Outlook

- Missing resonances in $\Sigma^*(1385)$ photoproduction
 - $\gamma p \rightarrow K^+ \Sigma^{*0}$ and $\gamma n \rightarrow K^+ \Sigma^{*-}$
 - Important contributions
 - $\Delta(2000)F_{35}$, $\Delta(1940)D_{33}$, $\Delta(2080)D_{13}$ from PDG
 - $N\frac{3}{2}$ (2095): missing resonance
 - has the largest partial decay width into the $K\Sigma^*$ channel
 - but small photon helicity amplitudes
 - Resonances have destructive interference.
- More rigorous studies are required.
 - More constrained resonance parameters
 - Other isospin channels
 - Both in theory and experiment